172 research outputs found

    Forecasting confined spatiotemporal chaos with genetic algorithms

    Get PDF
    A technique to forecast spatiotemporal time series is presented. it uses a Proper Ortogonal or Karhunen-Lo\`{e}ve Decomposition to encode large spatiotemporal data sets in a few time-series, and Genetic Algorithms to efficiently extract dynamical rules from the data. The method works very well for confined systems displaying spatiotemporal chaos, as exemplified here by forecasting the evolution of the onedimensional complex Ginzburg-Landau equation in a finite domain.Comment: 4 pages, 5 figure

    The strong thirteen spheres problem

    Full text link
    The thirteen spheres problem is asking if 13 equal size nonoverlapping spheres in three dimensions can touch another sphere of the same size. This problem was the subject of the famous discussion between Isaac Newton and David Gregory in 1694. The problem was solved by Schutte and van der Waerden only in 1953. A natural extension of this problem is the strong thirteen spheres problem (or the Tammes problem for 13 points) which asks to find an arrangement and the maximum radius of 13 equal size nonoverlapping spheres touching the unit sphere. In the paper we give a solution of this long-standing open problem in geometry. Our computer-assisted proof is based on a enumeration of the so-called irreducible graphs.Comment: Modified lemma 2, 16 pages, 12 figures. Uploaded program packag

    Modeling the Residential Infiltration of Outdoor PM2.5 in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)

    Get PDF
    Background: Epidemiologic studies of fine particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] typically use outdoor concentrations as exposure surrogates. Failure to account for variation in residential infiltration efficiencies (Finf) will affect epidemiologic study results

    Big Line Bundles over Arithmetic Varieties

    Full text link
    We prove a Hilbert-Samuel type result of arithmetic big line bundles in Arakelov geometry, which is an analogue of a classical theorem of Siu. An application of this result gives equidistribution of small points over algebraic dynamical systems, following the work of Szpiro-Ullmo-Zhang. We also generalize Chambert-Loir's non-archimedean equidistribution

    Curves over every global field violating the local-global principle

    Get PDF
    There is an algorithm that takes as input a global field k and produces a curve over k violating the local-global principle. Also, given a global field k and a nonnegative integer n, one can effectively construct a curve X over k such that #X(k)=n and X has points over every completion of k.Comment: 5 page

    Confounding and exposure measurement error in air pollution epidemiology

    Get PDF
    Studies in air pollution epidemiology may suffer from some specific forms of confounding and exposure measurement error. This contribution discusses these, mostly in the framework of cohort studies. Evaluation of potential confounding is critical in studies of the health effects of air pollution. The association between long-term exposure to ambient air pollution and mortality has been investigated using cohort studies in which subjects are followed over time with respect to their vital status. In such studies, control for individual-level confounders such as smoking is important, as is control for area-level confounders such as neighborhood socio-economic status. In addition, there may be spatial dependencies in the survival data that need to be addressed. These issues are illustrated using the American Cancer Society Cancer Prevention II cohort. Exposure measurement error is a challenge in epidemiology because inference about health effects can be incorrect when the measured or predicted exposure used in the analysis is different from the underlying true exposure. Air pollution epidemiology rarely if ever uses personal measurements of exposure for reasons of cost and feasibility. Exposure measurement error in air pollution epidemiology comes in various dominant forms, which are different for time-series and cohort studies. The challenges are reviewed and a number of suggested solutions are discussed for both study domains

    Priority for the Worse Off and the Social Cost of Carbon

    Get PDF
    The social cost of carbon (SCC) is a monetary measure of the harms from carbon emission. Specifically, it is the reduction in current consumption that produces a loss in social welfare equivalent to that caused by the emission of a ton of CO2. The standard approach is to calculate the SCC using a discounted-utilitarian social welfare function (SWF)—one that simply adds up the well-being numbers (utilities) of individuals, as discounted by a weighting factor that decreases with time. The discounted-utilitarian SWF has been criticized both for ignoring the distribution of well-being, and for including an arbitrary preference for earlier generations. Here, we use a prioritarian SWF, with no time-discount factor, to calculate the SCC in the integrated assessment model RICE. Prioritarianism is a well-developed concept in ethics and theoretical welfare economics, but has been, thus far, little used in climate scholarship. The core idea is to give greater weight to well-being changes affecting worse off individuals. We find substantial differences between the discounted-utilitarian and non-discounted prioritarian SCC

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally
    corecore